CSE220 - Dynamic Single Dimension
Arrays

100 points

Topics:
e Arrays
e Dynamic Allocation
e Pointers
e Input & Output

Description

The goal of this assignment is to create arrays during runtime based on user
input and then analyze them for interesting information.

You may use either C or C++ for this assignment.

However, make sure you use the correct compiler in your Makefile: g++ for C++ and
gcc for C

Use the following Guidelines:

e Give identifiers semantic meaning and make them easy to read (examples
numStudents, grossPay, etc).

e Keep identifiers to a reasonably short Tlength.

e User upper case for constants. Use title case (first letter is upper case)
for classes. Use lower case with uppercase word separators for all other
identifiers (variables, methods, objects).

e Use tabs or spaces to indent code within blocks (code surrounded by braces).
This includes classes, methods, and code associated with ifs, switches and
Toops. Be consistent with the number of spaces or tabs that you use to
indent.

e Use white space to make your program more readable.

Important Note:

ATl submitted assignments must begin with the descriptive comment block. To avoid
Tosing trivial points, make sure this comment header is included in every
assignment you submit, and that it is updated accordingly from assignment to
assignment.

Programming Assignment:

Based on user input you will create two arrays during runtime via pointers. You
will populate the arrays with random numbers. You should 1imit the random
numbers based on user 1input.

After the arrays are generated you will analyze them with set operations:

e If the set of numbers in both arrays is disjoint, then tell the user and
return to the options to build the arrays
e If the set isn’t disjoint:
o Find the union of both arrays and create another array to store the
values in the union
o Find the intersection of both arrays and create another array to store
the values in the intersection
o Find the difference between the first array and the second and create
another array to store the values in the difference
o Find the Symmetric Difference (opposite of the intersection) and
create another array to store the values
o Output each of these set operations

Menu (3% spec)
When the user starts the program, you should welcome them and present them with a
simple menu:

Welcome to the Set Analyzer!
1 - Manual Input
2 — Random Generation
0 - Exit
After finishing an option 1 or 2 you should return to the main menu.

Menu Option 1 (5% spec)
Ask the user for two array sizes.

Loop through the arrays in turn asking the user for values to fill the arrays.
Then perform the set operation analysis on the arrays.

Menu Option 2 (5% spec)
Ask the user for two array sizes.

Ask the user for a minimum and maximum integer.
Call on the Generate Array function for each array.
Perform the set operation analysis on the arrays.

Return to Main Menu (2% Spec)
After finishing Menu Option 1 or 2 return to the Main Menu.

Required Functions (75% Spec)
Write a function for each of the Set Operations:

e (Generate array
o Takes a size, a minimum, and a maximum
o Dynamically allocates an array
o Fills it with random numbers between minimum & maximum
o Returns the array
e Disjoint
o Takes two integer arrays and two sizes
o Returns Boolean/Integer if they are disjoint
e Intersection
o Takes two integer arrays and two sizes
o Returns a new array
e Union
o Takes two integer arrays and two sizes
o Returns new array that contains all elements of both
e Left Difference
o Takes two integer arrays and two sizes
o Returns a new array that is what is left in first parameter after
removing the intersection with the second parameter
e Symmetric Difference
o Takes two integer arrays and two sizes
o Returns a new array that is what is left in both the first and second
array after the intersection is removed from both
e Qutput Array
o Takes an array of integers and its size
o Outputs the array
e Analysis function
o Takes two integer arrays and two sizes
o Performs all of the above tasks
o Calls output Array on the results

Each set operation will need to dynamically allocate a new array and return it.
Remember this is done through pointers, and remember that you can return a
pointer from a function.

Makefile (10% Spec)
Create a Makefile to compile your code. The grader should be able to simply type
“make” into the terminal and get your executable.

Also include a target for “make clean” which should remove any .o files, the
executable file and any backup files made by emacs for vim.

Sample Output:

Welcome to the Set Analyzer!
1 - Manual Input

2 — Random Generation
0 - Exit
>>

If user selects Menu Option 1
You have chosen Manual Input
Enter Array Size 1l: <user input value>
Enter Array Size 2: <user input value>

Now collecting input for Array #1:
Enter values for each index:

0: <value>

1: <value>

Now collecting input for Array #2:
Enter values for each index:

0: <value>

1: <value>

If user selects Menu Option 2
You have chosen Random Generation

Enter Array Size 1: <user input value>
Enter Array Size 2: <user input value>

Enter minimum integer value: <user input>
Enter maximum integer value: <user input>

After building the array, do the analysis:
Running set operations!
Disjoint? <yes/no>
If they are disjoint, return the main menu, if they are not continue on:

Union: [<values separated by commas>]
Intersection: [<values separated by commas>]
Left Difference: [<values separated by commas>]

Symmetric Difference: [<values separated by commas>]
Return to the main menu

Sample Run

Welcome to the Set Analyzer!
1 - Manual Input

2 — Random Generation
0 - Exit
>> 1

You have chosen Manual Input
Enter Array Size 1: 5
Enter Array Size 2: 5

Now collecting input for Array #1:
Enter wvalues for each index:

0: 1
1: 2
2: 3
3: 4
4: 5

Now collecting input for Array #2:
Enter values for each index:

0: 4
1: 5
2: 6
3: 7
4: 8

Running set operations!
Disjoint? NO

Union: [1, 2, 3, 4, 5, o6, 7, 8]
Intersection: [4, 5]

Left Difference: [1, 2, 3]
Symmetric Difference: [1, 2, 3, 6,

Return to the main menu

Grading of Programming Assignment

The TA will grade your program following these steps:

(1) Compile the code. If it does not compile a U or F will be given in the

Specifications section.

Efficiency/Stability section.
(2) The TA will read your program and give points based on the points allocated
to each component, the readability of your code (organization of the code and
comments), logic, inclusion of the required functions, and correctness of the
implementations of each function.

Criteria
Specifications
Weight

50.00%

Code Quality
Weight

20.00%
Documentation

Weight
15.00%

Efficiency

Weight
15.00%

Levels of Achievement

A

100 %

The pregram works and
meets all of the
specifications.

100 %
Code is written clearly

100 %
Code is very well
commented

100 %

The code is extremely
efficient without
sacrificing readability and
understanding

What to Submit?

You are required to submit your solutions in a compressed format (.zip).

B

85 %

The program works and produces the
correct results and displays them
correctly. It also meets most of the other

specifications.

85 %
Code readability is less

85%

Commenting is simple but solid

85 %

The code is fairly efficient without
sacrificing readability and understanding

C

5%

The program produces mostly correct
results but does not display them
cerrectly andfor missing seme
specifications

75%

The code is readable only by
someone who knows what it is
supposed to be doing.

5%
Commenting is severely lacking

75%
The code is brute force but concise.

D

65 %

The program produces
partially correct results,
display problems and/or
missing specifications

65 %

Code is using single letter
variables, poorly organized

65 %
Bare minimum commenting

65 %

The code is brute force and
unnecessarily long

This will probably also affect the

E

5%

Program compiles and
runs and attempts
specifications, but several
problems exist

35%

The code is poorly
organized and very
difficult to read

35 %
Comments are poor

B %

The code is huge and
appears to be patched
together.

u

20%

Cede does not compile
and run. Produces
excessive incomect
results

20 %

Code uses excessive
single letter identifiers.
Excessively poorly
organized

20 %

Only the header
comment exists
identifying the student

20%

The code has created
very poor runtimes for
much simpler faster
algorithms.

files into a single zip file. Make sure your compressed file is Tabeled

- <lastname>_<firstname>_assn3.c OR

.Cpp

The compressed file MUST contain the following:

e <lastname>_<firstname>_assn3.c OR

e Makefile

.Cpp

No other files should be in the compressed folder.

F

0%

Code does not
compile. Barely an
attempt was made at
specifications.

0%

Code is
incemprehensible

0%
Non existent

0%
Code is
incomprehensible

Zip all
correctly

If multiple submissions are made, the most recent submission will be graded, even
if the assignment is submitted late.

ATl submissions must be electronically submitted to the respected homework Tink in
the course web page where you downloaded the assignment.

Academic Integrity and Honor Code.

You are encouraged to cooperate in study group on learning the course materials. However, you may not
cooperate on preparing the individual assignments. Anything that you turn in must be your own work: You must
write up your own solution with your own understanding. If you use an idea that is found in a book or from other
sources, or that was developed by someone else or jointly with some group, make sure you acknowledge the
source and/or the names of the persons in the write-up for each problem. When you help your peers, you should
never show your work to them. All assignment questions must be asked in the course discussion board. Asking
assignment questions or making your assignment available in the public websites before the assignment due will
be considered cheating.

The instructor and the TA will CAREFULLY check any possible proliferation or plagiarism. We will use the
document/program comparison tools like MOSS (Measure Of Software Similarity: http://moss.stanford.edu/) to
check any assignment that you submitted for grading. The Ira A. Fulton Schools of Engineering expect all
students to adhere to ASU's policy on Academic Dishonesty. These policies can be found in the Code of Student
Conduct:

http://www.asu.edu/studentaffairs/studentlife/judicial/academic _integrity.h
tm

ALL cases of cheating or plagiarism will be handed to the Dean's office. Penalties include a failing grade in the
class, a note on your official transcript that shows you were punished for cheating, suspension, expulsion and
revocation of already awarded degrees.

